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4 p  = K = 4288 110 - - 38.98mm 

M,, = 31A + 2ZB + ZC = 4.58 x lo6[ N mm] I 
Except for the simplifying assumptions that the shear introduced negligible error in the flexure 

formula and contributed negligible strain energy, this solution is exact. A simple approximate solution 
of the same problem is presented in Chapter 10. I 

PROBLEMS 

Sections 5.1-5.4 

5.1. A third spring of constant k3 and a weight W3 are added to 
the system of Example 5.3. Determine the displacements q l ,  q2, 
and q3 of weights W,,  W2, and W3. 
53. In the system of Example 5.3, additional springs and weights are 
added so that there is a string of n springs and n weights. Determine 
the n displacements ql,  q2, . . ., qn of the n weights W1, W2, . . ., W,. 

5.5. By means of Eqs. 5.6 and 5.7 and the formula for shear 
stress in a beam of rectangular cross section given in Problem 
5.4, show that the correction coefficient k (see Eq. 5.14) is 1.20. 
5.6. The state of stress in a beam subjected to pure bending is 
uniaxial with the nonzero stress given by 

5.3. Assume that the force-elongation relation for the springs of 
Example 5.3 is of the form 

ozz = M X Y  - (a) 
I X  

F = kx" 

where n is a constant different from -1. Determine the displace- 
ments q1 and q2 of the weights W ,  and W2 as functions of W1, 
W2, k l ,  k2, and n. 

By Eqs. 5.6, 5.7, and (a), show that the strain energy U, of 
bending is given by 

5.4. The shear stress distribution in a beam of rectangular cross 
section (Figure P5.4) subjected to shear force Vy is given by 5.7. The distribution of shear stress 0' in a torsion member of 

circular cross section is given by 
- VYQ 

o z y  - - 
I X b  (a) oxy = 2 

J 
Show that the shear stress is, as a function of y, 

where T denotes torque, J is the polar moment of inertia of the 
cross section, and p is the radial coordinate from the center 0 of 
the cross section to an interior point in the cross section. By 
Eqs. 5.6, 5.7, and (a), show that the strain energy UT of torsion 
is 

ozy = b,[l-$) 

where z,,, = 3VJ2A and A is the cross-sectional area. Hence, 
show that the shear stress varies parabolically and is a maxi- 
mum at y = 0. 

"f 
I - b - l  

FIGURE P5.4 

5.8. Two tension members have the same length (L = 1.5 m), 
the same diameter (D = 100 mm), and the same proportional 
limit (+L = 320 m a ) .  One is made of steel (E,  = 200 GPa) and 
the other is made of aluminum (E, = 72.0 GPa). Which member 
is capable of absorbing the most energy without exceeding the 
proportional limit? Explain why. 
5.9. A tension member of length L = 2.0 m is made of brass (Y = 
210 MPa and E = 82.7 GPa). The member is required to absorb 
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a design energy of 20 kJ with a safety factor of 2.5 compared to 
the energy absorbed at yield. 
a. For this design energy, what must the cross-sectional area of 
the member be? 
b. What is the axial stress CT in the member at the design 
energy? 
c. Determine the ratio Ylo. Why is this ratio not equal to the 
safety factor of 2.5? 
5.10. The two tension members shown in Figure P5.10 are 
made of the same material with yield strengthY. Which member 
A or B can absorb the greater energy up to initiation of yield? 
Explain your answer. Ignore the stress concentration at the 
change in cross section of member B. 

FIGURE ~ 5 . 1 2  

FIGURE P5.13 

FIGURE P5.10 

Remark regarding Problems 5.11,5.12, and 5.13: The relative 
importance of the strain energies U, in bending and Us in 
shear loading of beams is influenced by the ratio of the length L 
of the beam to its depth h, by the shape of the cross section, and 
by the type of loading. The relative magnitudes of U, and Us 

see footnote c of Table 5.1) shown in Figure P5.13 is made of 
steel (E = 200 GPa and G = 77.5 GPa). Show that 
a. the length L must be greater than 35.1h for Us < O.OlU,, 
b. the length L must be greater than 15.7h for Us < O.OSU,. 
5.14. The three torsion members shown in Figure P5.14 are 
made of an aluminum alloy (G = 27 GPa). Each section of 
each member has the same cross-sectional area. Member A 
has a solid circular cross section of diameter 50 mm. The hol- 
low portion of member B and the hollow member C have 
inside diameters of 50 mm. Determine the torsional strain 
energy for each member for an allowable maximum shear 
strain of 60 MPa. 

are examined in Problems 5.11,5.12, and 5.13, for given ratios 
of Llh and given cross sections. 
5.11. The simple beam in Figure P5.11 is made of steel (E = 
200 GPa and G = 77.5 GPa) and has a rectangular cross section. 
Show that 

I_- 500 mm _ I  
4 

A 50 mm 

a. the length L rnust be greater than 17.6h fi 
n- - - -- - - -- -- - 

B 
b. the length L must be greater than 7.9h for Us < 0.05UM 

k----------- 

r- 500 mm -7 
?-------------------------- 

4 
+IbP 01 q\ ' /  c 50 mm 

\--_-_--_------__-__f_______ 

FIGURE PS.14 
FIGURE P5.11 

5.12. The simple beam shown in Figure P5.12 is made Of Steel 
(E = 200 GPa and G = 77.5 GPa) and has a circular cross set- 

5.15. For the hanger shown in Figure P5.15, determine the ver- 
tical deflection of point A ,  assuming that bending effects domi- 
nate. Exuress the results in terms of P. E. I. L. and R. 
5.16. For the hanger shown in Figure P5.15, determine the 
change in slope of the hanger at p in t  A, assuming that bending 
effects dominate. Express the results in terms of P, E, I, L, and R. 

tion. Show that Us < O.OIUM for L = 5.0h. 
5.13. The simple beam with I-shaped cross section (S250 X 38, 
1, = 51.61 X lo6 mm4, h = 254 mm, b = 7.9 mm; for the area, 
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FIGURE P5.15 

5.23. Determine the horizontal component of deflection of the 
free end of the curved beam described in Example 5.9. Assume 
that UN and Us are so small that they can be neglected, 
5.24. For the pin-connected truss in Figure E5.12, determine 
the component of the deflection of point E in the direction of 
force P. 
5.25. Find the vertical deflection of point C in the truss shown 
in Figure P5.25. All members have the same cross section and 
are made of the same material. 

5.17. For the hanger shown in Figure P5.15, determine the 
change in slope of the hanger at point B,  assuming that bending 
effects dominate. Express the results in terms of P, E, I ,  L,  and R.  
5.18. For the hanger shown in Figure P5.15, determine the ver- 
tical deflection of point B,  assuming that bending effects domi- 
nate. Express the results in terms of P, E, I ,  L, and R. 
5.19. For the hanger shown in Figure P5.15, the vertical load is 
removed and a horizontal load to the left of magnitude P is 
applied. Determine the horizontal deflection of the hanger at 
point A, assuming that bending effects dominate. Express the 
results in terms of P, E, I ,  L, and R. 
5.20. For the hanger shown in Figure P5.15, the vertical load is 
removed and a horizontal load to the left of magnitude P is 
applied. Determine the rotation of the hanger at pointA, assum- 
ing that bending effects dominate. Express the results in terms 
of P, E ,  I ,  L,  and R .  
5.21. Solve Example 5.14 including the effects of shear force 
and normal force in the wire. Plot the relationship between 
spring stiffness and pitch angle p to demonstrate the relative 
contributions of torsion, bending, shear, and normal force for a 
spring with a single coil (n, = I), coil diameter D = 100 mm, 
wire diameter d = 10 mm, modulus of elasticity E = 200 GPa, 
and Poisson's ratio v = 0.3. Consider 0 I p I 30". 

5.22. A spring is formed by bending a wire into a flat spiral as 
shown in Figure P5.22. The wire has diameter d and the radial 
spacing between loops is 5d. A load P, which is normal to the 
plane of the spring and concentric with the center of the spiral, 
is applied slowly to deform the spring. Determine the stiffness 
of the spring in its undeformed configuration. 

FIGURE P5.25 

5.26. The beam in Figure P5.26 has its central half enlarged so 
that the moment of inertia I is twice the "due for each end set- 
tion. Determine the deflection at the center of the beam. 

FIGURE P5.26 

5.27. Member ABC in Figure P5.27 has a uniform symmetrical 
cross section and depth that is small compared to L and R.  
Determine the component of the deflection of point c in the 
direction of load p, 

FIGURE P5.27 

Top view 

FIGURE P5.22 

Oblique view 
5.28. Member O A B  in Figure P5.28 lies in one plane and has the 
shape of two quadrants of a circle. Assuming that Us and UN 
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can be neglected, determine the vertical component of the 
deflection of point B. 

FIGURE P5.33 

MB 

FIGURE P5.28 

5.29. Determine the horizontal deflection of point B for the 
member in Figure P5.28. 
5.30. Determine the change in slope of the cross section at point 
B for the member in Figure P5.28. 
5.31. Determine the x and y components of the deflection of 
point B of the semicircular beam in Figure P5.31. The depth of 
the beam is small compared with R. 

FIGURE P5.34 

FIGURE P5.35 

FIGURE P5.31 

5.32. Determine the vertical component of the deflection of 
point C for the semicircular beam in Problem 5.3 1. 
5.33. The structure in Figure P5.33 is made up of a cantilever 
beam AB (El, I,, A,)  and two identical rods BC and CD (E2, 
A2). Let A l  be large compared with A,  and L ,  be large com- 
pared with the beam depth. 
a. Determine the component of the deflection of point C in the 
direction of load P. 
b. If El  = E2 = E, the beam and rods have solid circular cross 
sections with radii r, and r2, respectively, and L1 = L2 = 25rl, 
determine the ratio of rl to r2 such that the beam and rods con- 
tribute equally to qp. 

5.34. Beam ABC in Figure P5.34 is simply supported and sub- 
jected to a linearly varying distributed load as shown. Deter- 
mine the deflection of the center of the beam. 
5.35. Member ABC in Figure P5.35 has a circular cross section 
with radius r. It has a right angle bend at B and is loaded by a 
load P perpendicular to the plane of ABC. Determine the com- 
ponent of deflection of point C in the direction of P. Assume 
that L ,  and L2 are each large compared to r. 

5.36. Member ABC in Figure P5.36 lies in the plane of the 
paper, has a uniform circular cross section, and is subjected to 
torque To, also in the plane of the paper, as shown. Determine 
the displacement of point C perpendicular to the plane of ABC. 
G = E/[2(1 + v)]. 

FIGURE P5.30 

5.37. For the member in Problem 5.36, determine the rotation 
of the section at C in the direction of T,,. 
5.38. Member ABC in Figure P5.38. lies in the plane of the 
paper, has a uniform circular cross section, and is subjected to a 
uniform load w [N/mm] that acts perpendicular to the plane of 
ABC. Determine the deflection of point C perpendicular to 
ABC, if length L is large compared with the diameter of the 
member. G = E/[2(1 + v)]. 
5.39. Member ABC in Figure P5.39 lies in the (x, y) plane, has a 
uniform circular cross section, and is subjected to loads P per- 
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FIGURE P5.38 

FIGURE P5.42 

FIGURE P5.39 

FIGURE P5.43 

FIGURE P5.40 

pendicular to the (x, y) plane. Determine the deflection of point 
C in the z direction, if R and L are large compared with the 
diameter of the member. 
5.40. The semicircular member in Figure P5.40 lies in the (x, y) 
plane and has a circular cross section with radius r. The 
member is fixed at A and is subjected to torque To at the free 
end at B. Determine the angle of twist of the cross section at 
B. G = E/[2(1 + v)]. 
5.41. For the semicircular member in Problem 5.40, determine 
the x,  y, and z components of the deflection of point B. 
5.42. A bar having a circular cross section is fixed at the origin 
0 as shown in Figure P5.42 and has right angle bends at points 
A and B. Length OA lies along the z axis; length AB is parallel to 
the x axis; length BC is parallel to they axis. Determine the x ,  y, 
and z components of the deflection of point C. Moment M ,  is a 
couple lying parallel to the x axis. G = E/[2( 1 + v)]. 
5.43. A stepped tension member has two sections of length 
1.00 m, each section being circular in cross section with diame- 

ters of 120 mm and 80 mm, respectively; see Figure P5.43. The 
member is made of an aluminum alloy that has a yield stress 
Y = 330 MPa and a modulus of elasticity E = 72 GPa. A spring 
slides freely over the bottom half of the member and bears on 
an end plate at the bottom end. The spring has a constant k = 
200 MN/m. The member was designed using a safety factor of 
1.80 for general yielding. Determine the deflection of the free 
end of the spring caused by the maximum allowable load P,,. 
5.44. The beam ABC in Figure P5.44 is made of steel (E = 
200GPa) and has a rectangular cross section, 70 mm by 
50mm. Member BD is made of an aluminum alloy (E = 
72 GPa) and has a circular cross section of diameter 10 mm. 
Determine the vertical deflection under the load Q = 8.50 kN. 
5.45. The beam ABC in Figure P5.45 is made of steel (E = 
200 GPa). It has a hollow circular section, with outer diameter 
180 mm and inner diameter 150 mm. The spring has a constant 
k = 2 MN/m. A moment M ,  = 40 kN m is applied at C. Deter- 
mine the rotation of the cross section at C. 
5.46. The beam in Figure P5.46 is made of brass (E = 83 GPa) 
and has a square cross section with a dimension of 10 mm. The 
identical coil springs have constant k = 30 kN/m. A load Q = 
250 N is applied at midspan (a = 100 mm). Determine the 
deflection at midspan. 
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FIGURE P5.50 

FIGURE P5.44 

FIGURE P5.45 

FIGURE P5.46 

5.47. Let the location of the load be a = 150 mm in Problem 
5.46. Determine the deflection under the load Q. 
5.48. The beam in Figure P5.48 is made of an aluminum alloy (E = 
72 GPa) and has a rectangular cross section with external dimen- 
sions 80 mm by 100 mm and a wall thickness of 10 mm. The iden- 
tical springs have constant k = 300 kN/m. A couple Mo is applied at 
distance a from the left end. Let Mo = 15 kN m and a = 1.50 m. 
Determine the rotation of the section where Mo is applied. 

S, = 2705 x lo3 mm3, Sy = 228 x lo3 mm3, depth = 515.6 mm, 
and area = 18,190 mm2. The structure was designed with a safety 
factor of 2.00 for general yielding. 
a. Determine the maximum allowable load Q. 
b. For this load, what is the deflection at the point where Q is 
applied? 
c. Determine the error in neglecting the strain energy resulting 
from axial load or from shear. 
5.51. A structure (Figure P5.51) is made by welding a circular 
cross section steel shaft (E = 200 GPa and G = 77.5 GPa), of 
length 1.2 in and diameter 60 mm, to a rectangular cross section 
steel beam of length 1.5 m and cross-section dimensions 70 
mm by 30 mm. A torque To = 2.50 kN m is applied to the free 
end of the shaft as shown. Determine the rotation of the free 
end of the shaft. 

2.50 kN m 

FIGURE P5.51 

5.52. A circular cross section shaft AB, with diameter 80 mm and 
length 1.0 m, is made of an aluminum alloy (G = 27 GPa); see 
Figure P5.52. It is attached at point A to a torsional spring with 
stiffness p = 200 kN m per rad. A torque To = 4 kN m is 
applied at the free end B. Determine the rotation of the shaft at B.  
5.53. A rectangular box-section beam is welded to a 180-mm 
diameter shaft (Figure P5.53). The box-section has external 
dimensions 100 mm by 180 mm and a wall thickness of 20 mm. 
Both members are made of an aluminum alloy (E = 72 GPa and 
G = 27 GPa). For a load Q = 16 m, determine the 
deflections at the free ends of the beam and shaft. 
5.54. For the beam shown in Figure P5.54, determine the vertical 
deflection at midspan of the beam in terms of Mo, L, E, and I. 

FIGURE P5.48 

5.49. In Problem 5.48, let a = 2.5 m. Determine the rotation at 
the section where Mo is applied. 
5.50. A structure is fabricated by welding together three lengths 
of members (y = 250 ma, E = 200 G P ~ ,  and G = 
77.5 GPa), as shown in Figure P5.50. The members have cross- 
section properties I,  = 695 x lo6 mm4, Iy  = 20.9 X lo6 mm4, 
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FIGURE P5.55 

5.56. The circular curved beam AB in Figure P5.56 has a radius 
of curvature R and circular cross section of diameter d. Deter- 
mine the horizontal and vertical displacement components of 
point B in terms of E, R, d, and load Q. Neglect the strain 
energy resulting from axial load and shear. 

FIGURE P5.53 

FIGURE P5.54 FIGURE P5.56 

5.55. For the structure shown in Figure P5.55, determine the 
horizontal and vertical displacement components of point C in 
terms of Q, w, L,,  L,, E, and I. 

5.57. Determine the rotation of the section at B in Problem 
5.56. 

Section 5.5 

5.58. Arm ABCD (Figure P5.58) has a constant symmetrical 
cross section. For the case Q = P, determine the support reac- 
tion at C and the deflection at B. The length L is very large com- 
pared to the cross-sectional dimensions of the arm. 

5.59. A propped cantilever beam is subjected to a midspan con- 
centrated load P (Figure P5.59). Select the reaction at the right 
end as the redundant. 

FIGURE P5.59 

FIGURE P5.58 

a. Determine the magnitude of the reaction at the right end. 
b. Determine the deflection of the beam under the load P. 
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c. If the support at the right end settles a vertical distance P L 3 ~ 2 E l ,  
determine the magnitude of the reaction at the right end. 
5.60. Let tension member EF be added to the structure in 
Figure E5.12 as indicated in Figure P5.60. All members are 
aluminum, for which E = 72 GPa. Members BC, CD, and DE 
each have cross-sectional area of 900 m2. The remaining 
members have cross-sectional area of 150 mm2. Load magni- 
tudes are = lo kN and Q = ICN. Determine the axial force in 
member EF and deflection of point E in the direction of force P. 

FIGURE P5.63 

length is large compared to its depth, determine the reaction at 
B and slope of the beam over the support at B. 

FIGURE P5.64 

5.65. Member ABC in Figure P5.65 has a constant cross sec- 
tion. Assuming that length R is large compared to the depth of 
the member, determine the horizontal H and vertical V compo- 
nents of the pin reaction at C .  

FIGURE P5.60 

5.61. The beam in Figure P5.61 is fixed at the right end and 
simply supported at the left end. Determine the reactionR at the 
left end, assuming that the length L of the beam is large com- 
pared with its depth. 

FIGURE P5.65 

5.66. The beam in Figure P5.66 is fixed at the right end and 
rests on a coil spring with spring constant k at the left end. 
Assuming that the beam length is large compared to its depth, 
determine the force R in the spring. 

FIGURE P5.61 

5.62. The beam in Problem 5.61 has a circular cross section with 
a diameter of 40 mm, has a length of 2.00 m, and is made of a 
steel (E = 200 GPa) having a working stress limit of 140 MPa. 
a. Determine the magnitude of w that will produce this limiting 
stress. 
b. How much would the stress in the beam be increased for the 
same value of w if the left end of the beam deflects 5.00 mm 
before making contact with the support? 
5.63. The beam in Figure P5.63 is subjected to two loads P and 
is supported at three locations A, B, and C as shown. Determine 
the reaction at B, assuming that the beam length is large com- 
pared to its depth. 
5.64. The beam in Figure P5.64 is fixed at the left end and is 
supported on a roller at its center B. Assuming that the beam 

FIGURE P5.66 

5.67. The structure in Figure P5.67 is constructed of two steel 
columns AB and CD with moment of inertia I, and steel beam 
BC with moment of inertia I*. Assuming that lengths H and L 
are large compared with the depths of the members, determine 
the horizontal component of the pin reaction at D. 
5.68. Dimensions R and L are large compared with the depth of 
the member. Determine the maximum moment for the chain 
link shown in Figure P5.68. 
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FIGURE P5.67 FIGURE P5.71 

FIGURE P5.68 

FIGURE P5.72 
5.69. Member ABCD in Figure P5.69 lies in the plane of the 
paper. If length L is large compared with the depth of the mem- 
ber, determine the pin reaction at D and the horizontal displace- 
ment of the pin at D. 

FIGURE P5.73 

FIGURE P5.69 

5.70. Let the pin at D for member ABCD in Problem 5.69 be 
prevented from displacing horizontally as load P is applied. 
Determine horizontal and vertical pin reactions at D. 
5.71. The structure in Figure P5.71 is made up of a steel (E = 
200 GPa) rectangular beam ABC with depth h = 40.0 mm and 
width b = 30.0 mm and two wood (E = 10.0 GPa) pin- 
connected members BD and CD with 25.0-mm square cross 
sections. If load P = 9.00 kN is applied to the beam at C, deter- 
mine the reaction at support D and the maximum stresses in the 
steel beam and wood members. 
5.72. Member ABC in Figure P5.72 has a uniform circular cross 
section with radius r that is small compared with R. Determine 
the pin reaction at C and horizontal component of the displace- 
ment of point B. 

5.73. Member ABC in Figure P5.73 has a right angle bend at B, 
lies in the (x, z) plane, and has a circular cross section with 
diameter d that is small compared with either length L,  or 
length L,. The reaction at C prevents deflection in the y direc- 
tion only. Determine the reaction at C when the moment Mo is 
applied at C. 
5.74. Member AB in Figure P5.74 is a quadrant of a circle lying 
in the (x, z) plane, has a circular cross section of radius r, which 
is small compared with R, and is supported by a spring (spring 
constant k)  at B, whose action line is parallel to the y axis. 
Determine the force in the spring when torque To is applied at B 
with action line parallel to the negative z axis. 
5.75. The structure in Figure P5.75 has a uniform circular cross 
section with diameter d, which is small compared with either H 
or L . The structure is fixed at 0 and C and lies in the (x, z) plane. 
The load P is parallel to the y axis. Determine the magnitudes 
of the moment and torque at 0 and C.  
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members are unstressed when P = 0. Determine the value of P 
based on a factor of safety of SF = 2.00 against initiation of yield- 
ing. Neglect stress concentrations. 
5.77. Member BCD and tension member BD in Figure P5.77 
are made of materials having the same modulus of elasticity. 
Member BCD has a constant moment of inertia I ,  a cross- 
sectional area that is large compared to area A of tension mem- 
ber BD, and depth that is small compared to L .  Determine the 
axial force in member BD. 

FIGURE P5.74 

Y 

FIGURE P5.75 

FIGURE P5.77 

5.78. Member BCDF in Figure PS.78 has the same moment of 
inertia I at every section. Determine the internal member forces 
No, VD, and MD at section D .  Length L is large compared with 
the depth of the member. 

FIGURE P5.78 

5.79. Member BCD in Figure PS.79 has the same moment of 
inertia I at every section. Determine the internal actions N B ,  V,, 
and MB at section B. Radius R is large compared with the mem- 
ber's depth. 
5.80. The beam in Figure P5.80 is supported by three identical 
springs with spring constant k. It is subjected to a uniformly 
distributed load w. Determine the force in each spring in terms 
of w, k,  L, E, and I .  
5.81. Show that the reaction at the roller support for the beam in 
Figwe ps-81 is equal to 5Q/2. 
5.82. Determine the force in the spring (Figure P5.82) in terms 
of w, L, k, E, and I .  

FIGURE P5.76 

5.76. Each of the three members of the structure in Figure P5.76 is 
made of a ductile steel (E = 200 GPa and v = 0.29) with yield stress 

-, is fixed at o, 
and is welded to beam AB, which has a rectangular cross section 
with a depth of 75.0 mm and width of 50.0 mm. Tension member 
BC has a circular cross section with a diameter of 7.50 mm. All the 

= 420 M~~~~ oA has a diameter of 
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FIGURE P5.79 

5.84. Determine the reaction at B for the beam in Figure P5.84 
in terms of w, L,,  L,, E, and I. 

FIGURE P5.84 

5.85. Determine the reaction at the roller support for the struc- 
ture in Figure P5.85 in terms of Q, R, E, and I. 

FIGURE P5.80 

FIGURE P5.81 

FIGURE P5.82 

FIGURE P5.85 

5.86. In Problem 5.81, determine the vertical deflection at the 
point where Q is applied. 
5.87. In Problem 5.83, determine the horizontal deflection at 
the point where load Q is applied. 
5.88. In Problem 5.85, determine the vertical deflection at the 
point where load Q is applied. 
5.89. For the structure in Figure P5.89, determine the force in 
the spring in terms of M,, k, L, E, and I. 

FIGURE P5.89 

5.90. An I-beam is made of steel (E = 200 GPa) and is 5.0 m 
long (Figure P5.90). It has cross-section properties I ,  = 24.0 x 
lo6 mm4, Iy  = 1.55 x lo6 mm4, depth = 203.2 mm, flange 
width = 101.6 mm, and area = 3490 mm2. The helical support 
spring has a constant k = 1.00 MN/m. For the case where Q = 
30.0 kN, determine the force in the spring and the maximum 
bending stress in the beam. 

FIGURE P5.83 

5.83. Show that the vertical reaction at the roller support for the 
curved member in Figure P5.83 is equal to 2Q/(3~- 8). 
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Q 

FIGURE P5.90 

5.91. For the structure in Figure P5.91, derive a formula for the 
force in the bar in terms of w, E l ,  I ,  and L, for the beam and E,, 
A,, and L, for the bar. 

- 400 rnrn - 

FIGURE P5.93 

200 kN - rnlrad 

W 

FIGURE P5.91 

5.92. The beam in Problem 5.91 is made of steel (E = 200 GPa). 
It has a rectangular cross section with dimensions 90 mm deep, 
30 mm wide, and a length L,  = 2.00 m. The rod is made of an 
aluminum alloy (E = 72.0 GPa). It has a diameter of 5 mm and 
a length L, = 4.00 m. Determine the tension in the bar in terms 
of load w. 
5.93. A shaft AB is attached to member CDFH at A and fixed to 
a wall at B (Figure P5.93). The shaft has a diameter of 60 mm 
and the parts C D  and FH of member CDFH have square cross 
sections of 40 mm by 40 mm. The massive hub D F  may be con- 
sidered as rigid. A torque of magnitude 3 kN * m is applied to 
the midsection of the shaft as shown. All members are made of 
steel (E = 200 GPa and G = 77.5 GPa). 
a. Determine the maximum bending stress in members C D  and 
FH. 
b. Determine the maximum shear stress in the shaft. 
5.94. In Figure P5.94, the shaft is attached to a torsional spring 
at one end and fixed to a rigid wall at the other end. The shaft 
has an 80-mm diameter and shear modulus G = 77.5 GPa. The 
torsional spring constant is p = 200 kN m/rad. A torque of 
magnitude 5 kN m is applied to the midsection of the shaft as 
shown. Determine the maximum shear stress in the shaft. 
5.95. A rectangular box-beam, 100 mm by 200 mm and with a 
wall thickness of 10 mm, is welded to a shaft of diameter 180 mm 

FIGURE P5.94 

Q = 25 kN 

FIGURE P5.95 

(Figure P5.95). Determine the vertical reaction at the roller sup- 
port. (E = 200 GPa and G = 77.5 GPa for all members.) 
5.96. A steel torsion member has a length of 3.00 m and diame- 
ter of 120 mm (E = 200 GPa and G = 77.5 GPa). It is fixed to a 
rigid wall at one end. A steel beam of rectangular cross section, 
120 mm by 30.0 mm, is welded perpendicularly to the torsion 
member at its midsection (Figure P5.96). The beam is sup- 
ported by a roller located 2.00 mm from the welded section. 
The free end of the member is subjected to a torque T = 16.0 kN m. 
Determine the reaction at the roller. 
5.97. A beam ABC is fixed at its ends A and C (Figure P5.97). 
Show that the shear V and moment M at C are given by the rela- 
tions V = Q(L3 - 3a2L + 2a3)/L3 and M = Q(aL2 - 2a2L + a3)/L2. 
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.T= 16.0 kN - m  

FIGURE P5.99 
FIGURE P5.96 

Q 

FIGURE P5.97 

5.98. The beam in Problem 5.97 has a circular cross section of 
diameter d = 150 mm and length L = 2.00 m. For a = L/3, deter- 
mine the magnitude of load Q that produces a maximum bend- 
ing stress of 100 MPa. 
5.99. The L-shaped beam ABCD in Figure P5.99 has a constant 
cross section along its length. Show that the horizontal and ver- 
tical reactions H and V ,  respectively, of the pin at D are given by 
the expressions H = 9Q/22 and V = 4Q/11. 
5.100. The L-shaped beam in Figure P5.99 has a square cross 
section, 80 mm by 80 mm, and a length 3L = 2400 mm. 
a. Determine the magnitude of load Q that produces a maxi- 
mum bending stress of 120 MPa in the beam. 
b. The beam is made of steel (E = 200 GPa). Determine the ver- 
tical deflection of the beam at point C. 

5.101. Consider the indeterminate beam of Example 5.15 (Fig- 
ure E5.15). Let the beam material be elastic-perfectly plastic 
(Figure 4 . 4 ~ ) .  Let the cross section be rectangular with width b 
and depth h. 
a. Determine the magnitude of the uniform load w = w y  that 
causes yielding to initiate and locate the section at which it 
occurs. 
b. Determine the magnitude of the uniform load w = wp that 
causes a plastic hinge to form at the wall support. 
c. Determine the magnitude of the uniform load w = wpc that 
causes the beam to form a plastic hinge to OCCUT at the section 
of maximum positive moment. The load wpc is called the plas- 
tic collapse load for the member. 
d. Construct a moment diagram for the beam for load wpc. 
e. Draw a sketch of the deformed shape of the beam for w = wpc. 
Note: The elastic segments of the beam rotate about a plastic 
hinge as rigid bodies. For this reason, the response of the beam 
at w = wK is like a mechanism that rotates kinematically about 
hinges. Therefore, the term mechanism or kinematic mechanism 
is used in plastic collapse analysis (limit analysis) to describe 
this process. 
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